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The mathematical description of the migration of moisture in composites based on 
a Markov random process is analyzed. The physical aspect of the model is re- 
vealed by means of x-ray computational tomography. An expression is obtained 
for the pore-tortuosity coefficient. 

The penetration of moisture in polymer composite materials consisting of a reinforcing 
filler and a polymer matrix has specific features associated with the laminar structure of 
the material, the alternation of tangential and spiral layers, and the presence of pores. 

The process is random in character, and is determined by the random distribution of 
pores, cracks, and cleavages, their sizes and spatial orientations. As shown by tomographic 
investigation of the internal structure of composites [i], the basic channels of moisture 
penetration are formed at the intersection of two adjacent bands. The presence of a large 
number of random factors associated with the tension of the strip in winding, the percentage 
application of binder, the heat-treatment conditions, the spread of the characteristics of 
the initial components, and so on lead to the formation of paths of random moisture migra- 
tion in composite materials. 

Individual realizations of this random process may be observed by means of x-ray compu- 
tational tomography. With the aim of revealing the macrokinetics of the process, a series 
of tomographic experiments are undertaken on the penetration of water in samples. The posi- 
tion of the sample remains constant. After repeated scanning of a fixed cross section with 
progressive penetration by water and the derivation of tomograms and matrices of linear at- 
tenuation coefficients (LAC) characterizing the density of each elementary cell, the initial 
scan is subtracted from each subsequent one. The macrokinetics of the penetration of water 
or moisture into the material may be judged from the variation in cell density. The results 
of one such experiment are shown in Fig. i. Analyzing Fig. i, it may be concluded that ini- 
tially water penetrates into local defects of the outer layer of composite, propagating 
along the bands of reinforcing filler through pores and capillaries. Water migration in the 
first layer continues until a transverse defect is reached. The possibility of passing to 
the second layer then appears. The character of propagation here is as in the first layer. 
This process continues in the same way until the water reaches the other surface of the sam- 
ple. Thus, random migration of water (moisture) occurs in composites, by motion of the 
water along the layers in the direction of the reinforcement in interband spaces which form 
channels of totally arbitrary form and cross-sectional dimensions and transition to the next 
layer on reaching a transverse defect. 

Simultaneously with the capillary mechanism of moisture penetration, a diffusional 
mechanism must also be considered. Diffusion in a fixed elementary cell begins at the mo- 
ment of appearance of the diffusing material in its capillaries. The random character of 
moisture migration in composites determines the randomness of the moisture-transfer parame- 
ters, one of which is the tortuosity. This parameter appears in the equation describing the 
behavior of the moisture-composite system and largely determines the accuracy of estimation 
of the output characteristics of the process. It is used to determine the effective diffu- 
sion coefficients [2]. Tortuosity is regarded as one of the probabilistic characteristics 
of moisture transfer in composites. 

Two assumptions may be made for the given process: 

i) the states in which the sample-moisture system resides are discrete, since the ma- 
terial may be divided into individual layers according to the winding scheme and Isharp bound- 
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Fig. i. Tomograms corresponding to subtraction of images of 
the cross section of an organic-plastic sample inthe experi- 
mental investigation of water propagation: a) at time &t I = 
380 sec; b) At 2 = 840 sec; c) At~ = 3780 sec. 

aries of the beginning and ending of residence of the system in each state may be noted; 
their set forms a sequence ("chain") with continuous time; 

2) for each time t = ~, the probability of any discrete state Si+ I in the future (t > 
�9 ) depends only on its state S i at present and does not depend on how long it has been in 
this state. 

Therefore, the sequence of states of the system corresponds to the condition of an 
ordinary flux of events. Transitions of the system from state to state occur at random 
times, which cannot be determined solely from its state, and the probability of transition 
from one state to another at time At is lijAt [3]. Thus, the penetration of moisture in a 
composite may be interpreted as a Markov random process with discrete states and continuous 
time, under the assumption that the real flux of events is replaced by a Poisson flux. 

In accordance with the laminar structure of the composite determined by the winding 
scheme, the penetration of moisture may be divided into the following individual states: 
$I, the initial "dry" state of the material; Si+l, the state of the material with moisture 
in pores of the layers i, 2, .... i (i = i, 2 ..... n); S d, the state of the material charac- 
terized by the diffusion of moisture. Transition from one state to another occurs randomly 
here. A graph of states of water migration in a composite with the given probability densi- 
ties of transition li,i+l from state S i to state Si+ I is shown in Fig. 2, As is known, the 
process described by the scheme of a Markov random process with discrete states and continu- 
ous time is characterized by the probability Pk(t) and the mean residence time t k of the 
system in each of its states. The probability of its residence in each of the states in 
Fig. 2 is described by the Kolmogorov system of equations [2] 

P~(t) = --XT,2P~(t); P~(t) ---- X~,~P~(t)--  X* sP~(t); 

Pi (t) = X~_I#Pf_I (t) -- X*,+,Pi (t); ( i ) 

n 

�9 P,~ (t) = ~,,~_,,.P,~_, (t) - -  ~ ,* ,o$. ( t ) ;  Pal(t) ---- X P'  (t) ~,d, 

where ~ , i + 1  = ~ i , i + l  + ~ i , d -  At any t ime t ,  the  no rma l i z ing  c o n d i t i o n  

n (2) 
 P,(0 +Pd = i 
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Fig. 2. Graph of states of the compos- 
ite-moisture system. 

is valid here, and the initial conditions are written in the form (t = 0) 

P~ (0) = l, P2 (0) = Pa (0) . . . . .  P .  (0) = Pd (0) = O. ( 3 )  

Taking account of Eq. (3), the solution of Eq. (I) for the probabilities Pz(t) ..... 

Pn(t) takes the form 
h--I 

i = l  
Ph (t) = ~ ~ exp(--~*i+l t )  -}- ~ , exp  ( - - )~ t ) ;  ( 4 )  

j-1 1-1 * * @ / , i + l -  ki,i+O 
i = l  

when k = 1 

where 

0~,~ 

h--1 

I1 )~i, i+l 
i = I  

h 
[ ' !  * * ()~,~+~-)~J,i+~) 

i =  1 

h--1 

k 

II ( ~ s  * ~,,, ,,~) 
i = l  

0 

= 1; ~,;~+~ =/=~j.,j+,, 

when ~ = r/, 

when /~ = 1, 2 ,  . . . ,  n - -  | .  

It follows from the normalizing condition in Eq. (2) that 

= I - ~ P,,(t). (s) 
k = l  

The mean residence time of the system in each of the states in Fig. 2 is determined from 
the formula [3] 

7,, = jr P~ (0 at, ( 6 )  
0 

which may be written in the following specific form, taking account of Eq. (4) 

h--1 

H Q i+! 
7,,- ~=~ (7) 

h 

f=I 

Setting lid = 0, i = i, 2,..., n, it follows that 

I 
~,~,,+~ = 1/7~; ;%-- ~, (8) 

It follows from Eq. (8) that the probability density of transition of the system from 
state S i to state Si+ i is the inverse of the mean residence time of the system in the pre- 
ceding state. This time may be estimated by tomography of the given cross section with re- 
construction of the image from the size of the elementary cells corresponding to the thick- 
ness of the wound layer. An aqueous solution of X-ray contrast material is chosen as the 
diffusing material. To eliminate "illumination," it is replaced before each tomographic 
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measurement by a compensator liquid with an LAC close to the mean LAC of the sample. After 
multiple scanning of the sample cross sections with a layer thickness of i-2 mm, coronal re- 
construction is employed. 

Note that Eqs. (4)-(7) are derived for the general case when f~_~ ~ ~ X~ ~+i. However, 
situations in which some or all of the densities I~ i+~ (i = I, 2,.~.,'k - iVare equal may 
be encountered. In the most probable case in which'any two are equal (consider the case 
%~= = l~s, for example), the solution of Eq. (i) is written in the form 

Px (t) = exp (--k~t); (9) 

P~ (t) = ~72t exp (--X~t); (10) 

when k = 3 

h - - I  
~ * 

Ph (t) = a~ exp (--k~2/) + ~ ~'=1 
:=2 6" , -  :;+,)~ " * * (~ ~ + ~ -  )~j,/+~) 

i = 3  

• exp (--~*i+d) -k b~ exp ~* dr), 

bh-- 

[ ' ah -- %i* i+ 1 
( ~ , ~ + , -  ~%) 

i ~ l  

k 1 ] .  
h 

j=a (;~i,J+~ ~2) 11 -- -- (~i,~+I ~2) 
i=3 

h 

H * (X~,~+,- X~2) = I, 

( k--1 

i = 1  ~ k : 12, 

(~i.i+1 -- k.*d) ~- :d) ~ n * 
i~3 

~*i+~=/:k,~*d, k = 3 ,  4, ..., n - - 1 .  

X 

(ii) 

The mean residence time of the system in each state in Fig. 2 in this case may be determined 
from the formula 

~-1 [ 2 
rl * = )~i , i+a h ~* 

~=l Z*~ I1 ( i , i + ~ -  ~'2) 

i ) 
h X* ' + 
H ( ~,~+i- X~) (12) 

i=3 

)~T2 * �9 = (~/,i+~ -- x*2) 
i=3 

+ ~ h . , i~=]. 
:=~ (~*~ ~,T,:+O' II * * * -- (~5,i+1 -- ~ ' i , :q - l )  ~'],i-J-1 

i=3 

If all the densities ll,i+ l are equal, the probabilities and mean residence times of the 
system in states SI,...,S n in Fig. 2 are as follows 

~k~l k--I 

Pk (0 e x D ( - - ~ * d )  II * - -  , ~ i , i + l ,  
( k -  I)! i=~ 

k= i, 2, ..., n; i= I, 2 ..... n--'-l; (13) 

- -  ~iti-}-l" (14) 

For quantitative estimation of the moisture-transfer parameters in the composites, it 
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is expedient to convert from the probability of residence of the system in each state to the 
mean probability of moisture migration in each state. If the states $I,..., S n are regarded 
as one state of moisture migration over layers of the material SM, the process may be reduced 
to two states SM and S d. Comparing the solution of the Kolmogorov equations for these two 
cases, an expression determining the mean moisture-migration probability in each state S k 
may be obtained 

>~ = exp (--~dt~). ( 15 ) 

The random process in which the moisture "searches" for the next defect may be consid- 
ered somewhat differently. Letting ~ denote the mean number of observations in unit time, 
the probability Pm of obtaining an exactly specified number of observations m 0 in a search 
time t S is expressed by the formula [4] 

U m 

Pm -- exp (--u). ( 16 ) 
m! 

Here u = ~t S is the mean number of observations in search time t S. In search theory, this 
quantity is called the search potential of observations in the search time 

Pm~l = 1--exp(--u) .  (17) 

Comparing Eqs. (15) and (17 ) ,  a fo rmula  i s  o b t a i n e d  f o r  t he  ma thema t i ca l  e x p e c t a t i o n  of  t he  
mean number o f  o b s e r v a t i o n s  in  u n i t  t ime in  t he  k - t h  l a y e r  o f  compos i te  

1 

Yk = l n [ 1 - - e x p ( - - X ~ ) ]  7~ (18) 

Using 7k, the tortuosity (E) may be determined; it is the ratio of the pore length to 
its projection on the direction of transfer. In the general case, the tortuosity factor 
characterizes all the inhomogeneities of the porous material: tortuosity and corrugation, 
the presence of tunnel pores, etc. [i]. Assuming equal rate of moisture propagation in the 
layers of material, it is found that 

Ly n 2 \ ~k ] " ( 1 9 )  
k=l h=l 

Analyzing Eqs. (15), (18), and (19), it may be concluded that the random process of moisture 
migration in composites is characterized by the presence of pores, cracks and cavities in 
the material, their size, mutual position, the characteristics of the laminar structure and 
reinforcement, and the component composition. The tortuosity depends on the porosity of the 
material, the pore distribution with respect to the radius, and the number of transverse de- 
fects. 

Results of calculating e for the first three layers of a composite at different times 
characterizing the residence time of the moisture in each of the layers are shown in Fig. 3, 
where the subscript i corresponds to the given residence time in one of the three states, 

s 

2 

1' o o) ti-lo 

Fig. 3. Variation in tortosity as a 
function of the residence time in the 
i-th state (i = I, 2, 3) with Qi = i0 
hr for the eases: i) tj = 0.I hr; 2) 
0.2; 3) 0.5; 4) 1.0 hr; j = i, 2, 3; 
j ~ i; ti, sec. 
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and j to two other states. The time intervals and mass-transfer coefficients obtained on 
samples of the composites analogous to that corresponding to the tomogram in Fig. 1 are con- 
sidered. It follows from Fig. 3 that: assuming the best material has the leasttortuosity, 
the most acceptable is that in which the layers are characterized by the same properties 
with respect to moisture migration. In this case, e is a minimum, and depends only on the 
ratio Lx/Ly. With a purely diffusional process, Ly = 0, and hence g is not determined. In- 
crease in the difference between t~ leads to increase in ~. As shown by calculations, mois- 

0 and ture migration characterized by the tortuosity is determined basically by the times t i 
is practically independent of 8i. The results obtained may beextended to any number of 
layers. 

Thus, the tortuosity factor of pores has been estimated as a random parameter of mois- 
ture absorption in composites. In the present case, it characterizes the pore space of the 
material over its whole volume and may be used in mathematical models of moisture transfer. 

NOTATION 

n, number of layers in material; -0 tk, mean residence time in k-th state in Fig. 2, tak- 
ing no account of internal diffusion; L x, Ly, mass-transfer coefficients along x and y axes, 
respectively. 

i. 

2. 

3. 
4. 
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NONSTEADY TRANSFER AND DISPERSIONAL EFFECTS IN 

HETEROGENEOUS MEDIA 

Yu. A. Buevich and V. A. Ustinov UDC 536.242:532.546 

A single transport equation taking account of the dispersion of effective con- 
ductivities and interphase exchange due to relaxation effects, as well as the 
inhomogeneity of the corresponding fields, is obtained in Laplace transforms. 
The asymptotes of this equation are considered. 

1. The problem of adequate description of heat and mass transfer in heterogeneous and, 
in particular, granular media has been under intensive study for several decades now. Meth- 
ods of engineering calculation based on semiempirical models have been proposed, leading to 
completely satisfactory results in many situations; see the review [I], for example. How- 
ever, as yet there is no general theory indicating the regions of validity of these methods 
and models and extending them to processes in which nonsteady effects, sources, and sinks 
due to phase and chemical transformations and diverse nonlinear phenomena are of fundamental 
importance [2]. In practice, as before, the phenomenological model based on the concept of 
parallel transport in the two phases of a heterogeneous medium is most often used; this 
model leads to a system of two linear equations with constant coefficients [i, 3, 4] or to 
a single equivalent transport equation, which may be formally obtained from this system [5, 

6]. 

The applicability of these equations is limited to processes which are very close to 
steady state. Generalization to a situation which is very unsteady is difficult in that 

A. M. Gor'kii Ural State University, Sverdlovsk. Translated from Inzhenerno-Fiziches- 
kii Zhurnal, Vol. 59, No. 5, pp. 807-816, November, 1990. Original article submitted Sep- 
tember 29, 1989. 

1432 0022-0841/90/5905-1432512.50 �9 1991 Plenum Publishing Corporation 


